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a b s t r a c t

We synthesized 3D nanoporous graphene by a chemical vapour deposition method with nanoporous
copper as a catalytic substrate, and we show that the resulting nanoporous graphene has the same
average pore size and the same morphology as the underlying copper substrate. Our surface-enhanced
Raman scattering (SERS) investigation indicates that the nanoporosity of graphene significantly
improves the SERS efficiency of graphene as a substrate, which is better than that of planar single-
layer graphene substrates.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Surface-enhanced Raman scattering (SERS), which consists in
the enhancement of inelastic light scattering of molecules
adsorbed on a surface, is an attractive analytical method able to
provide quantitative structural information for analytes. Although
this effect is most often generated by the strong local electro-
magnetic confinement resulting from rough metallic surfaces or
nanostructures such as colloidal silver or gold nanoparticles [1,2],
large SERS effect has been observed recently in dealloyed nano-
porous metallic films [3,4]. Interestingly, three-dimensional (3D)
architectures of graphene have also been synthesized recently [5],
including continuous 3D-foam-like graphene with pore sizes of
several hundred micrometres obtained by the metal-catalysed
chemical vapour deposition (CVD) method using Ni substrates
[6,7]. This is an encouraging development since graphene has
many advantages over metal substrates, such as lower cost and
better biocompatibility. In principle though, graphene as substrate
does not support the electromagnetic mechanism (EM) for SERS
because the surface plasmons on graphene are in the terahertz
range rather than in the visible range [8]. However, SERS can also
arise from a charge transfer between the adsorbed molecules and
a substrate with proper chemical affinity with these molecules,
and SERS has been reported for two-dimensional single-layer
graphene [9–11]. Unfortunately, whether properly controlled
nanoporosity can improve the SERS properties of graphene is

unknown. Here we present a study of SERS enhancement for
nanoporous graphene (NG) with a 3D network of nanometre pore
sizes. Our results indicate a significant SERS enhancement as
compared to planar graphene and nanoporous copper (NC).

2. Experimental

The 3D NG used in this study has been synthesized by a CVD
method with NC as catalytic substrate. In order to synthesize 3D
NG, NC substrates with different pore size distributions are
fabricated by dealloying 0.14 mm-thick Cu30Mn70 alloys synthe-
sized by a melt spinning method [12–14]. The pore size of NC is
adjusted by changing the dealloying time of the erosion aqueous
solution consisting of (NH4)2SO4 �H2O (1 M L�1) and MnSO4 �H2O
(0.01 M L�1). Then, NC substrates are used to synthesize NG films
by a CVD process using a mixture of gases with a composition of
CH4: Ar: H2¼8: 200: 20 sccm min�1. Owing to the high activity of
NC, the growth temperature is lowered to 600–900 1C. Finally, to
investigate the SERS effect from 3D NG itself without the influence
of the NC substrate, the 3D NG is released by etching graphene/NC
stacks in aqueous FeCl3 solution, then rinsed in deionized water
and finally transferred to a Si substrate.

3. Results and discussion

Fig. 1 shows the scanning electron microscopy (SEM) images of
NCs with average pore sizes ranging from 23 to 40 nm, which can
also be observed in a cross sectional SEM image of NC (Fig. S1).
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Fig. 2a shows the cross-sectional SEM image of NG obtained after
etching NC. The porous morphology of NG is shown in Fig. 2b. Our
transmission electron microscopy (TEM) characterization of NG
indicates that it consists of continuous 3D porous graphene
(Fig. 2c), which is only one layer at the edge, as shown in Fig. S2.
The selected area electron diffraction image displayed in Fig. 2d
exhibits hexagonal spots in one circle, implying that the NG
sample has a single crystal structure. From these experiments
we conclude that the NG films grown on the NC surfaces have
similar nanoporous structure as the underlying NC templates.

We further study the NG films using a Horiba JY-T64000 Raman
spectrometer. In Fig. 3a we show the Raman spectra of NG films
synthesized at different temperatures via NC substrates with 33 nm
pore size. All G peaks, associated with the degree of graphitization,
are found around 1590 cm�1. Strong and broad D and 2D modes are
observed, which can be understood in terms of high disorder
induced from edges and nanoclusters [15–17]. A downshift of the D
peak from 1364 to 1347 cm�1 is observed with the synthesis
temperature increasing. Samples obtained at 600 and 700 1C show
poor crystal structure (Fig. S3), whereas 800 1C is suitable to obtain
NG with good quality, as displayed in Fig. 2c and d. Raman spectra of
NG samples synthesized on NC substrates with different pore sizes at
the optimized synthesis temperature of 800 1C are shown in Fig. 3b.
Because of some melting of NC substrates (as shown in Fig. S4) with
different pore sizes, NG samples eventually show very similar
structures (as shown in Fig. 2a and b) without obvious differences
in the Raman spectra.

We now discuss the SERS properties of NG using rhodamine 6G
(R6G) as a probed molecule. First, the NG films have been
transferred from the NC substrates onto SiO2/Si substrates. Then,
R6G molecules are deposited on a NG substrate by soaking them in

R6G solutions for 30 min. After soaking, the samples are dried
naturally. The setup for Raman detection of R6G on a plain 3D NG
substrate is schematically drawn in Fig. 4a.

We show in Fig. 4b the Raman spectra of 10�5 M R6G obtained
on NG, NC, multi-layer graphene (MLG, 10 layers, CVD method)
and single-layer graphene (SLG, CVD method) substrates. The
fabrication method of MLG and SLG is discussed in detail in our
previous work [18]. According to our findings, the SERS enhance-
ment follows the sequence: NG4SLG ⪢ NC ⪢ MLG. This phenom-
enon is attributed to the strong interaction between NG and R6G
through the photo-induced charge transfer and π–π interactions.
Fig. 4b clearly indicates that the SERS intensity of NG is higher
than that of SLG substrates. It has been reported that the excitation
of intrinsic graphene plasmons are tuneable and strengthened by
natural nanoscale inhomogeneities, such as wrinkles [19,20]. Most
likely, the better SERS efficiency of NG than SLG suggests that
enhancement of the local electromagnetic field due to porosity
and surface roughness plays an important role in tuning the
plasmonic properties of these materials [21].

4. Conclusions

3D-foam-like graphene films with nanopore sizes have been
synthesized by a CVD method with NC as substrates, and the
resulting nanoporous graphene has a similar porous structure as
the underlying NC substrates. The Raman enhancement effect has
been investigated by using R6G molecules. Our results indicate
that NG has a great potential as SERS substrate that is better than
those of NC, MLG and even SLG.

Fig. 1. SEM images of nanoporous coppers with different pore sizes: (a) 23 nm, (b) 28 nm, (c) 33 nm and (d) 40 nm.
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Fig. 2. SEM images of NG with (a) a side view and (b) a top view, (c) a typical TEM image, and (d) a SAED image of NG synthesized on a 33 nm NC under 800 1C.

Fig. 3. (a) Raman spectra of 3D NG samples synthesized at different temperatures on 33 nm NC substrates. (b) Raman spectra of NG samples on different NC substrates
prepared at 800 1C. The laser power is 30 mw.

Fig. 4. (a) Scheme of Raman detection of R6G on a plain 3D NG substrate. Raman signals of R6G on different substrates (b). The laser power is 30 mw. The fluorescence
background of R6G in (b) has been removed from the spectra.
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